Instabilites in Arch Shaped MEMS

نویسنده

  • K. Das
چکیده

Arch shaped microelectromechanical systems (MEMS) have been used as mechanical memories, micro-relays, micro-valves, optical switches, and digital micro-mirrors. A bi-stable structure is characterized by a multivalued load deflection curve. Here, the symmetry breaking, the snap-through instability, and the pullin instability of a sinusoidal shaped MEMS under static and dynamic electric loads have been studied. The electric load is a nonlinear function of the a priori unknown deformed shape of the arch, and is thus a follower type load. The nonlinear partial differential equation governing transient deformations of the arch is solved numerically using the Galerkin method and the resulting ordinary differential equations are integrated by using the Livermore solver for ordinary differential equations. For the static problem, the displacement control and the pseudo-arc length continuation methods are used to obtain the bifurcation curve of the MEMS displacement versus a load parameter. The displacement control method fails to compute asymmetric deformations of the MEMS, which are found by the pseudo-arc-length continuation method. Two distinct mechanisms of the snap-through instability for the dynamic problem are demonstrated. It is found that critical loads and geometric parameters for instabilities of an arch under an electric load with and without the consideration of mechanical inertia effects are quite different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Novel High Sensitive MEMS Capacitive Fingerprint Sensor

In this paper a new design of MEMS capacitive fingerprint sensors is presented. The capacitive sensor is made of two parallel plates with air gap. In these sensors, the capacitance changes is very important factor. It is caused by deformation of the upper electrode of sensor. In this study with making slots in upper electrode, using T-shaped protrusion on diaphragm in order to concentrate the f...

متن کامل

Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches

Arch-shaped microelectromechanical systems (MEMS) have been used as mechanical memories, micro-relays, micro-valves, optical switches and digital micro-mirrors. A bi-stable structure, such as an arch, is characterized by a multivalued load deflection curve. Here we study the symmetry breaking, the snap-through instability and the pull-in instability of a bi-stable arch-shaped MEMS under static ...

متن کامل

New Design of Mems piezoresistive pressure sensor

The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical applications is presented. This analysis is developed through a novel model and a finite element method (FEM) model. A microsensor with a diaphragm 1000 „m length and with thickness=400 µm is studied. The electric response of this microsensor is obtained with applyi...

متن کامل

Study on the Linearly Range of S-Shaped MEMS Planar Micro-spring

For the lack of formula of linear range for S-shaped MEMS planar micro-spring, this paper establishes physical and mathematical model and analysis the material stress-strain angle. The formula is deduced by calculating the strain and rotation of the basic unit of micro-spring tension. Compared with the results of the tests on micro-spring which produced by UV-LIGA process, the formula results i...

متن کامل

Micro-cantilevered MEMS Biosensor for Detection of Malaria Protozoan Parasites

In this paper, the presented work aims to provide a designed model based on Finite element method for detection of Malaria protozoan parasites. Micro-cantilevers are next generation highly efficient biosensors for detection and prevention of any disease. Here, an E-shaped model for micro cantilevered biosensor is designed using COMSOL Multiphysics specifically for detection of Malaria. Microcan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010